Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Berberine induces resistance against tobacco mosaic virus in tobacco.

Identifieur interne : 000287 ( Main/Exploration ); précédent : 000286; suivant : 000288

Berberine induces resistance against tobacco mosaic virus in tobacco.

Auteurs : Wenhui Guo [République populaire de Chine] ; He Yan [République populaire de Chine] ; Xingyu Ren [République populaire de Chine] ; Ruirui Tang [République populaire de Chine] ; Yubo Sun [République populaire de Chine] ; Yong Wang [République populaire de Chine] ; Juntao Feng [République populaire de Chine]

Source :

RBID : pubmed:31814252

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined.

RESULT

Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H

CONCLUSION

This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.


DOI: 10.1002/ps.5709
PubMed: 31814252


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Berberine induces resistance against tobacco mosaic virus in tobacco.</title>
<author>
<name sortKey="Guo, Wenhui" sort="Guo, Wenhui" uniqKey="Guo W" first="Wenhui" last="Guo">Wenhui Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, He" sort="Yan, He" uniqKey="Yan H" first="He" last="Yan">He Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Xingyu" sort="Ren, Xingyu" uniqKey="Ren X" first="Xingyu" last="Ren">Xingyu Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ruirui" sort="Tang, Ruirui" uniqKey="Tang R" first="Ruirui" last="Tang">Ruirui Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yubo" sort="Sun, Yubo" uniqKey="Sun Y" first="Yubo" last="Sun">Yubo Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yong" sort="Wang, Yong" uniqKey="Wang Y" first="Yong" last="Wang">Yong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Juntao" sort="Feng, Juntao" uniqKey="Feng J" first="Juntao" last="Feng">Juntao Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31814252</idno>
<idno type="pmid">31814252</idno>
<idno type="doi">10.1002/ps.5709</idno>
<idno type="wicri:Area/Main/Corpus">000330</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000330</idno>
<idno type="wicri:Area/Main/Curation">000330</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000330</idno>
<idno type="wicri:Area/Main/Exploration">000330</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Berberine induces resistance against tobacco mosaic virus in tobacco.</title>
<author>
<name sortKey="Guo, Wenhui" sort="Guo, Wenhui" uniqKey="Guo W" first="Wenhui" last="Guo">Wenhui Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, He" sort="Yan, He" uniqKey="Yan H" first="He" last="Yan">He Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Xingyu" sort="Ren, Xingyu" uniqKey="Ren X" first="Xingyu" last="Ren">Xingyu Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ruirui" sort="Tang, Ruirui" uniqKey="Tang R" first="Ruirui" last="Tang">Ruirui Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yubo" sort="Sun, Yubo" uniqKey="Sun Y" first="Yubo" last="Sun">Yubo Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yong" sort="Wang, Yong" uniqKey="Wang Y" first="Yong" last="Wang">Yong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Juntao" sort="Feng, Juntao" uniqKey="Feng J" first="Juntao" last="Feng">Juntao Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling</wicri:regionArea>
<wicri:noRegion>Yangling</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pest management science</title>
<idno type="eISSN">1526-4998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Berberine (MeSH)</term>
<term>Plant Diseases (MeSH)</term>
<term>Plant Proteins (MeSH)</term>
<term>Salicylic Acid (MeSH)</term>
<term>Tobacco (MeSH)</term>
<term>Tobacco Mosaic Virus (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (MeSH)</term>
<term>Berbérine (MeSH)</term>
<term>Maladies des plantes (MeSH)</term>
<term>Protéines végétales (MeSH)</term>
<term>Tabac (MeSH)</term>
<term>Virus de la mosaïque du tabac (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Berberine</term>
<term>Plant Proteins</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Diseases</term>
<term>Tobacco</term>
<term>Tobacco Mosaic Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide salicylique</term>
<term>Berbérine</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
<term>Tabac</term>
<term>Virus de la mosaïque du tabac</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULT</b>
</p>
<p>Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31814252</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Pest management science</Title>
<ISOAbbreviation>Pest Manag Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Berberine induces resistance against tobacco mosaic virus in tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>1804-1813</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ps.5709</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined.</AbstractText>
<AbstractText Label="RESULT" NlmCategory="RESULTS">Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H
<sub>2</sub>
O
<sub>2</sub>
, increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. In addition, upregulation of salicylic acid (SA) biosynthesis genes PAL, CM1, ICS, PBS3 and the enzyme benzoic acid 2-hydroxylase (BA2H) confirmed that SA was involved in the defensive signals. Berberine can induce crop resistance against TMV, Phytophthora nicotianae, Botrytis cinerea and Blumeria graminis in the greenhouse.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.</AbstractText>
<CopyrightInformation>© 2019 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Wenhui</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3745-0497</Identifier>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>He</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4299-5918</Identifier>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Xingyu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ruirui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yubo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Juntao</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0628-4839</Identifier>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2017ZDCXL-NY-03-01</GrantID>
<Agency>Development Plan of Shaanxi Province</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2017YFD0200900</GrantID>
<Agency>National Key R&D Program of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31401776</GrantID>
<Agency>National Natural Science Fund of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pest Manag Sci</MedlineTA>
<NlmUniqueID>100898744</NlmUniqueID>
<ISSNLinking>1526-498X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0I8Y3P32UF</RegistryNumber>
<NameOfSubstance UI="D001599">Berberine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001599" MajorTopicYN="N">Berberine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014027" MajorTopicYN="Y">Tobacco Mosaic Virus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">berberine</Keyword>
<Keyword MajorTopicYN="N">defense response</Keyword>
<Keyword MajorTopicYN="N">induced resistance</Keyword>
<Keyword MajorTopicYN="N">natural product</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31814252</ArticleId>
<ArticleId IdType="doi">10.1002/ps.5709</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Zhang GQ, Feng JT, Han LR and Zhang X, Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01. Int J Biol Macromol 88:572-577 (2016).</Citation>
</Reference>
<Reference>
<Citation>Fan HT, Song BA, Bhadury PS, Jin LH, Hu DY and Yang S, Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on tobacco mosaic virus. Int J Mol Sci 12:4522-4535 (2011).</Citation>
</Reference>
<Reference>
<Citation>Gan XH, Hu DY, Wang YJ, Yu L and Song BA, Novel trans-ferulic acid derivatives containing a chalcone moiety as potential activator for plant resistance induction. J Agric Food Chem 65:4367-4377 (2017).</Citation>
</Reference>
<Reference>
<Citation>Zhao L, Feng CH, Hou CT, Hu LY, Wang QC and Wu YF, First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses. PLoS One 10:e0117496 (2015).</Citation>
</Reference>
<Reference>
<Citation>Ge YH, Liu KX, Zhang JX, Mu SZ and Hao XJ, The limonoids and their Antitobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv. J Agric Food Chem 60:4289-4295 (2012).</Citation>
</Reference>
<Reference>
<Citation>Kong HG, Shin TS, Kim TH and Ryu CM, Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9: 90-102 (2018).</Citation>
</Reference>
<Reference>
<Citation>Conrath U, Systemic acquired resistance. Plant Signaling Behav 1:179-184 (2006).</Citation>
</Reference>
<Reference>
<Citation>Gao QM, Kachroo A and Kachroo P, Chemical inducers of systemic immunity in plants. J Exp Bot 65:1849-1855 (2014).</Citation>
</Reference>
<Reference>
<Citation>van Wees SC, de Swart EA, van Pelt JA, van Loon LC and Pieterse CM, Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711-8716 (2000).</Citation>
</Reference>
<Reference>
<Citation>Chen MJ, Zhang CZ, Zi Q, Qiu DW, Liu WX and Zeng HM, A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Rep 33:1865-1879 (2014).</Citation>
</Reference>
<Reference>
<Citation>Schneider M, Schweizer P, Meuwly P and Métraux JP, Systemic acquired resistance in plants. Int Rev Cytol 168:303-340 (1996).</Citation>
</Reference>
<Reference>
<Citation>Wang J, Wang HY, Xia XM, Li PP and Wang KY, Inhibitory effect of esterified lactoferin and lactoferin against tobacco mosaic virus (TMV) in tobacco seedlings. Pestic Biochem Physiol 105:62-68 (2013).</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Zhang YH, Qiu DW, Zeng HM, Guo LH and Yang XF, BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Biochem Biophys Res Commun 457:627-634 (2015).</Citation>
</Reference>
<Reference>
<Citation>Jia XC, Meng QS, Zeng HH, Wang WX and Yin H, Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci Rep 6:26144 (2016).</Citation>
</Reference>
<Reference>
<Citation>Amzalek E and Cohen Y, Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology 97:179-186 (2007).</Citation>
</Reference>
<Reference>
<Citation>Vallad GE and Goodman RM, Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920-1934 (2004).</Citation>
</Reference>
<Reference>
<Citation>Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG et al., A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61-70 (1996).</Citation>
</Reference>
<Reference>
<Citation>Godard JF, Ziadi S, Monot C, Corre DL and Silue D, Benzothiadiazole (BTH) induces resistance in cauliflower (Brassica oleracea var botrytis) to downy mildew of crucifers caused by Peronospora parasitica. Crop Prot 18:397-405 (1999).</Citation>
</Reference>
<Reference>
<Citation>Wang KT, Liao YX, Cao SF, Di HT and Zheng YH, Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biol Technol 102:51-60 (2015).</Citation>
</Reference>
<Reference>
<Citation>Yin H, Zhao XM and Du YG, Oligochitosan: a plant diseases vaccine-a review. Carbohydr Polym 82:1-8 (2010).</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Liu WJ and Cui Y, Modern research progress of Huanglian (in Chinese). China J Chin Med 29:1642-1645 (2014).</Citation>
</Reference>
<Reference>
<Citation>da Silva AR, de Andrade Neto JB, da Silva CR, Campos RS, Costa Silva RA, Freitas DD et al., Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother 60:3551-3557 (2016).</Citation>
</Reference>
<Reference>
<Citation>Kuang ZQ, Wang ST, Huang L and Zhou LJ, Agricultural activities of berberine (in Chinese). Agrochemicals (Chinese) 56:88-93 (2017).</Citation>
</Reference>
<Reference>
<Citation>Fu WH, Tian GR, Pei QH, Ge XZ and Tian PF, Evaluation of berberine as a natural compound to inhibit peach brown rot pathogen Monilinia fructicola. Crop Prot 91:20-26 (2017).</Citation>
</Reference>
<Reference>
<Citation>Hou DY, Yan CQ, Liu HX, Ge XZ, Xu WJ and Tian PF, Berberine as a natural compound inhibits the development of brown rot fungus Monilinia fructicola. Crop Prot 29:979-984 (2010).</Citation>
</Reference>
<Reference>
<Citation>Yan XH, Chen J, Di YT, Fang X, Dong JH, Sang P et al., Anti-tobacco mosaic virus (TMV) quassinoids from Brucea javanica (L.) Merr. J Agric Food Chem 58:1572-1577 (2010).</Citation>
</Reference>
<Reference>
<Citation>Wang DL, Xie N, Yi SD, Liu CY, Jiang H, Ma ZQ et al., Bioassay-guided isolation of potent aphicidal Erythrina alkaloids against Aphis gossypii from the seed of Erythrina crista-galli L. Pest Manag Sci 74:210-218 (2018).</Citation>
</Reference>
<Reference>
<Citation>Patterson BD, Macrae EA and Ferguson IB, Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem 139:487-492 (1984).</Citation>
</Reference>
<Reference>
<Citation>Song FM, Ge XC and Zheng Z, The role of active oxygen species and lipid peroxidation in the resistance to cotton seedlings to Fusarium wilt (in Chinese). Acta Phytopathol Sin (Chin) 31:110-116 (2001).</Citation>
</Reference>
<Reference>
<Citation>Sofo A, Dichio B, Xiloyannis C and Masia A, Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293-302 (2004).</Citation>
</Reference>
<Reference>
<Citation>Yu J, Gao J, Wang XY, Wei Q, Yang LF, Qiu K et al., The pathway and regulation of salicylic acid biosynthesis in Probenazole-treated Arabidopsis. J Plant Biol 53:417-424 (2010).</Citation>
</Reference>
<Reference>
<Citation>Grant MR and Jones JDG, Hormone (dis)harmony moulds plant health and disease. Science 324:750-752 (2009).</Citation>
</Reference>
<Reference>
<Citation>Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC et al., The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144:1144-1156 (2007).</Citation>
</Reference>
<Reference>
<Citation>Janda M and Ruelland E, Magical mystery tour: salicylic acid signalling. Environ Exp Bot 114:117-128 (2015).</Citation>
</Reference>
<Reference>
<Citation>Mandadi KK and Scholthof KB, Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25:1489-1505 (2013).</Citation>
</Reference>
<Reference>
<Citation>Sugano S,Sugimoto T, Takatsuji H and Jiang C-J, Induction of resistance to Phytophthora sojae in soyabean (Glycine max) by salicylic acid and ethylene. Plant Pathol 62:1048-1056 (2013).</Citation>
</Reference>
<Reference>
<Citation>Pasquer F, Isidore E, Zarn J and Keller B, Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol Biol 57:693-707 (2005).</Citation>
</Reference>
<Reference>
<Citation>Li H, Yu Y, Li ZZ, Arkorful E, Yang YY, Liu XQ, Li XH and Li RL, Benzothiadiazole and β-aminobutyricacid induce resistance to Ectropis obliqua in tea plants (Camellia sinensis (L.) O. Kuntz). Molecules 23:1290-1304 (2018).</Citation>
</Reference>
<Reference>
<Citation>Li XY, Chen Z, Jin LH, Hu DY and Yang S, New strategies and methods to study interactions between tobacco mosaic virus coat protein and its inhibitors. Int J Mol Sci 17:252 (2016).</Citation>
</Reference>
<Reference>
<Citation>Greenberg JT and Yao N, The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201-211 (2004).</Citation>
</Reference>
<Reference>
<Citation>Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A et al., Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol Biochem 40:605-610 (2002).</Citation>
</Reference>
<Reference>
<Citation>Greenberg JT, Guo A, Klessig DF and Ausubel FM, Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551-563 (1994).</Citation>
</Reference>
<Reference>
<Citation>Heath MC, Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117-124 (1998).</Citation>
</Reference>
<Reference>
<Citation>Kulye M, Liu H, Zhang YL, Zeng HM, Yang XF and Qiu DW, Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ 35:2104-2120 (2012).</Citation>
</Reference>
<Reference>
<Citation>Delledonne M, Xia YJ, Dixon RA and Lamb C, Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588 (1998).</Citation>
</Reference>
<Reference>
<Citation>Heath MC, Hypersensitive response-related death. Plant Mol Biol 44:321-334 (2000).</Citation>
</Reference>
<Reference>
<Citation>Wu D, Chu HY, Jia LX, Chen KM and Zhao LQ, A feedback inhibition between nitric oxide and hydrogen peroxide in the heat shock pathway in Arabidopsis seedlings. Plant Growth Regul 75:503-509 (2014).</Citation>
</Reference>
<Reference>
<Citation>Asai S, Ohta K and Yoshioka H, MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406 (2008).</Citation>
</Reference>
<Reference>
<Citation>Wang J, Zhu YK, Wang HY, Zhang H and Wang KY, Inhibitory effects of esterified whey protein fractions by inducing chemical defense against tobacco mosaic virus (TMV) in tobacco seedlings. Ind Crops Prod 37:207-212 (2012).</Citation>
</Reference>
<Reference>
<Citation>Klessig DF, Choi HW and Dempsey DA, Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant Microbe Interact 31:871-888 (2018).</Citation>
</Reference>
<Reference>
<Citation>Wildermuth MC, Dewdney J, Wu G and Ausubel FM, Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565 (2001).</Citation>
</Reference>
<Reference>
<Citation>Pallas JA, Paiva NL, Lamb C and Dixon RA, Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J 10:281-293 (1996).</Citation>
</Reference>
<Reference>
<Citation>Gao QM, Zhu S, Kachroo P and Kachroo A, Signal regulators of systemic acquired resistance. Front Plant Sci 6:228 (2015).</Citation>
</Reference>
<Reference>
<Citation>Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D et al., Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212:627-636 (2016).</Citation>
</Reference>
<Reference>
<Citation>Cheng XF, Xiong RY, Li YZ, Li FF, Zhou XP and Wang AM, Sumoylation of turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell 29:508-525 (2017).</Citation>
</Reference>
<Reference>
<Citation>Jennifer M, Phosphorylation and nuclear localization of NPR1 in systemic acquired resistance. Plant Cell 27:3291 (2015).</Citation>
</Reference>
<Reference>
<Citation>Yang GG, Tang LG, Gong YD, Xie JT, Fu YP, Jiang DH et al., A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol 217:739-755 (2018).</Citation>
</Reference>
<Reference>
<Citation>Yan H, Xie N, Zhong CQ, Su AQ, Hui XL, Zhang X et al., Aphicidal activities of Amaryllidaceae alkaloids from bulbs of Lycoris radiata against Aphis citricola. Ind Crops Prod 123:372-378 (2018).</Citation>
</Reference>
<Reference>
<Citation>Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A and Van Wees SC, Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489-521 (2012).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Guo, Wenhui" sort="Guo, Wenhui" uniqKey="Guo W" first="Wenhui" last="Guo">Wenhui Guo</name>
</noRegion>
<name sortKey="Feng, Juntao" sort="Feng, Juntao" uniqKey="Feng J" first="Juntao" last="Feng">Juntao Feng</name>
<name sortKey="Ren, Xingyu" sort="Ren, Xingyu" uniqKey="Ren X" first="Xingyu" last="Ren">Xingyu Ren</name>
<name sortKey="Sun, Yubo" sort="Sun, Yubo" uniqKey="Sun Y" first="Yubo" last="Sun">Yubo Sun</name>
<name sortKey="Tang, Ruirui" sort="Tang, Ruirui" uniqKey="Tang R" first="Ruirui" last="Tang">Ruirui Tang</name>
<name sortKey="Wang, Yong" sort="Wang, Yong" uniqKey="Wang Y" first="Yong" last="Wang">Yong Wang</name>
<name sortKey="Yan, He" sort="Yan, He" uniqKey="Yan H" first="He" last="Yan">He Yan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000287 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000287 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31814252
   |texte=   Berberine induces resistance against tobacco mosaic virus in tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31814252" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024